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  Abstract  

 
 

Bernoulli wavelet based numerical method is developed for the 

solution of Abel’s integral equations. The properties of Bernoulli 

wavelets are discussed. This method is based on Bernoulli wavelets 

polynomials. Integral equation is reduced into system of algebraic 

equations. Using Matlab, we obtained the Bernoulli wavelet 

coefficients at the collocation points. Numerical results and error 

analysis are tested through some of the illustrative examples, which 

show the efficiency of the proposed method.  
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1. Introduction 

Abel’s integral equation finds its applications in various fields of science and engineering. Such as microscopy, 

seismology, semiconductors, scattering theory, heat conduction, metallurgy, fluid flow, chemical reactions, 

plasma diagnostics, X-ray radiography, physical electronics, nuclear physics [18, 19, 8]. 

In 1823, Abel, when generalizing the tautochrone problem derived the equation: 

0

( )
( ),

t
y s

ds f t
t s




      (1.1) 

where f(t) is a known function and y(t) is an unknown function to be determined. This equation is a particular 

case of a linear Volterra integral equation of the first kind. For solving Eq. (1.1) different numerical based 

methods have been developed over the fast few years, such as product integration methods [1, 2], collocation 

methods [3], homotopy analysis transform method [14]. The generalized Abel’s integral equations on a finite 

segment appeared for the first time in the paper of Zeilon [22]. There are several numerical methods for 

approximating the solution of singular integral equations is known. Baker [1] studied the numerical treatment 

of integral equations. A numerical solution of weakly singular Volterra integral equations was introduced in 

[4]. Babolian and Salimi [5] discussed an operational matrix method based on block-pulse functions for 

singular integral equations.  

 

Wavelets theory is a relatively new and an emerging tool in applied mathematical research area. It has 

been applied in a wide range of engineering disciplines; particularly, signal analysis for waveform 

representation and segmentations, time-frequency analysis and fast algorithms for easy implementation. 
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Wavelets permit the accurate representation of a variety of functions and operators. Moreover, wavelets 

establish a connection with fast numerical algorithms [6, 7]. Since from 1991 the various types of wavelet 

method have been applied for numerical solution of different kinds of integral equation, a detailed survey on 

these papers can be found in [9]. Such as Lepik et al. [9] applied the Haar wavelets. Maleknejad et al. proposed 

Legendre wavelets [10], Rationalized haar wavelet [11], Hermite Cubic splines [12], Coifman wavelet as 

scaling functions [13]. Yousefi et al. [20] have introduced a new CAS wavelet. Shiralashetti and Mundewadi 

[15] applied the Bernoulli wavelet for the numerical solution of Fredholm integral equations. Some of the 

papers are found for solving Abel’s integral equations using the wavelet based methods, such as Legendre 

wavelets [21] and Chebyshev wavelets [16].  In this paper, we introduced the numerical method based on 

Bernoulli wavelets method for solving Abel’s integral equations of second kind.  

 

The article is organized as follows: In Section 2, the basic formulation of Bernoulli wavelets and the function 

approximation is presented. Section 3 is devoted the method of solution. In section 4, numerical results are 

demonstrated the accuracy of the proposed method using some of the illustrative examples. Lastly, the 

conclusion of the proposed method is given in section 5.  

  

2. Bernoulli Wavelets and Function Approximation 

Bernoulli wavelets are 𝐵𝑛,𝑚 = 𝐵(𝑘, 𝑛̂, 𝑚, 𝑡) have four arguments; 𝑛̂ = 𝑛 − 1, 𝑛 = 1,2,3, … , 2𝑘−1 ,
 
k is any 

positive integer, m is the order of Bernoulli polynomials and t is the normalized time. Then it can be defined 

on the interval [0, 1) as follows, 

𝐵𝑛,𝑚(𝑡) = {
2
𝑘−1
2 𝛽𝑚(2

𝑘−1𝑡 − 𝑛̂),
𝑛̂

2𝑘−1
 ≤ 𝑡 <  

𝑛̂+1

2𝑘−1
,

0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
                                 (2.1) 

with 

𝛽𝑚(𝑡) =

{
 

 
1,                                                       𝑚 = 0,

1

√
(−1)𝑚−1(𝑚!)2

(2𝑚)!
𝛼2𝑚

𝛽𝑚(𝑡),      𝑚 > 0,  

where m = 0,1,2,...,M-1 and n = 1,2,...,2k-1. The coefficient 
1

√
(−1)𝑚−1(𝑚!)2

(2𝑚)!
𝛼2𝑚

  is for normality, 2−(𝑘−1)is the 

dilation parameter, 𝑛̂2−(𝑘−1)is the translation parameter and 

𝛽𝑚(𝑡) = ∑(
m

𝑖
) 𝛼𝑚−𝑖𝑡

i

𝑚

𝑖=0

 

are the well-known Bernoulli polynomials of order m. Where 𝛼𝑖 , 𝑖 = 0,1, … ,𝑚 are Bernoulli numbers. These 

numbers are a sequence of signed rational numbers which arise in the series expansion of trigonometric 

functions and can be defined by the identity, 

𝑡

𝑒𝑡 − 1
=∑ αi

ti

i!
.

∞

𝑖=0

 

The first few Bernoulli numbers are  

𝛼0 = 1, 𝛼1 =
−1

2
, 𝛼2 =

1

6
, 𝛼4 =

−1

30
, 𝛼6 =

1

42
, 𝛼8 =

−1

30
, 𝛼10 =

5

66
,   .  .  .  

With 𝛼2𝑖+1 = 0, 𝑖 = 1,2,3, …
 

The first few Bernoulli Polynomials are,  

𝛽0(𝑡) = 1,        𝛽1(𝑡) = 𝑡 − 
1

2
, 𝛽2(𝑡) = 𝑡

2 − 𝑡 +
1

6
, 
 

𝛽3(𝑡) = 𝑡
3 −

3

2
𝑡2 +

1

2
𝑡,     𝛽4(𝑡) = 𝑡

4 − 2𝑡3 + 𝑡2 −
1

30
, 

𝛽5(𝑡) = 𝑡
5 −

5

2
𝑡4 +

5

3
𝑡3 −

1

6
𝑡,   𝛽6 = 𝑡

6 − 3𝑡5 +
5

2
𝑡4 −

1

2
𝑡2 +

1

42
,…  

A function 
2( ) [0,1]f t L may be expanded as: 

, ,

1 0

( ) ( ),n m n m

n m

f t c B t
 

 

  
    (2.2) 

where 

                     , ,( ( ), ( )).n m n mc f t B t                       (2.3) 
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In (2.3), (. , .) denotes the inner product. 

If the infinite series in (2.2) is truncated, then (2.2) can be rewritten as: 
12 1

, ,

1 0

( ) ( ) ( ),

k M
T

n m n m

n m

f t c B t C t

 

 

       (2.4) 

where C and ( )B t are 
12 1k M  matrices given by: 

1 1

1

10 11 1, 1 20 2, 1 2 ,0 2 , 1

1 2 2

[ , ,..., , ,..., ,..., ,..., ]

[ , ,..., ] ,

k k

k
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M M M

T

M
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 



  
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

  
 


             

(2.6) 

3. Method of Solution 

Consider the Abel integral equation, 

First kind:

0

( )
( ) , 0 1,

t
y s

f t ds t
t s

  


                                (3.1) 

           Second kind: 

0

( )
( ) ( ) , 0 1

t
y s

y t f t ds t
t s

   


         (3.2) 

Numerical procedure as follows:  

STEP 1: We first approximate y(t) as truncated series defined in Eq. (2.4). That is, 

 ( ) ( )Tu t Y t      (3.3) 

where Y  and ( )t are defined similarly to Eqs. (2.5) and (2.6).  

STEP 2: Then substituting Eq. (3.3) in Eqs. (3.1) and (3.2), we get 

    First kind:

0

( )
( ) ,

( )

t TY s
f t ds

t s 




                                     (3.4) 

   Second kind: 

0

( )
( ) ( ) , 0 1

t T
T Y s

Y t f t ds t s
t s


    


             (3.5) 

STEP 3: Substituting the collocation point 
it  in Eqs. (3.4) and (3.5), we obtain,  

   First kind:

0

( )
( )

( )

it T

i

i

Y s
f t ds

t s 




                                       (3.6) 

    

1 1

0

( )
( ) , where

( )

it T
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
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  

Second kind: 

0

( )
( ) ( ) ,

it T
T

i i

i

Y s
Y t f t ds

t s


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
                   (3.7) 

      

2 2

0

( )
( ( ) ) , where

t T
T

i

i

Y s
Y t G f G ds

t s


   


  

STEP 4: Now, we get the system of algebraic equations with unknown coefficients.  

First kind: 
1

Tf Y G
 

Second kind:  
2, where ( ( ) )T

iY K f K t G     

STEP 5: By solving the above system of equations, we obtain the Bernoulli wavelet coefficients ‘Y’ and then 

substitute in Eq. (3.3), we obtain the approximate solution of Eq. (3.1) and Eq. (3.2). 
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4. Numerical experiments 

 

In this section, we present Bernoulli wavelet method for the numerical solution of Abel’s integral equations in 

comparison with existing method [16] to demonstrate the capability of the present method and error analysis 

are shown in tables and figures. Error function is presented to verify the accuracy and efficiency of the 

following numerical results:  

𝐸𝑀𝑎𝑥 = 𝐸𝑟𝑟𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  ‖𝑦𝑒(𝑡𝑖) − 𝑦𝑎(𝑡𝑖)‖2 = √∑(𝑦𝑒(𝑡𝑖) − 𝑦𝑎(𝑡𝑖))
2

𝑛

𝑖=1

 

where,
 
𝑦𝑒 and

 
𝑦𝑎 are the exact and approximate solution respectively. 

 

Example 1. Consider the Abel’s integral equation of the second kind [16],  

0

4 1 ( )
4 ( ) arcsin , 0 1.

1 21

t
t y s

y t ds t
tt t s

 
      

  
  (4.1) 

which has the exact solution 
1

( ) .
1

y t
t




  Applying the Bernoulli wavelet method for solving Eq. (4.1) 

with k = 1 and M = 6, we find,  

[4.4051    4.5050    4.5071    4.4834    4.4512    4.4166]

    4.5774    5.0000    5.2910    5.5275    5.7321    5.9149

   -6.6624   -4.6188   -2.1485    0.5668    3.4641    6.5105

    5.7342   -0.67

f

K




08   -4.4202   -4.9344   -1.8926    4.9400

    4.0662    6.6074    3.5855   -1.7742   -5.7928   -4.4974

  -28.5997   -1.2138   24.6731   27.8210    5.3403  -25.7715

   -3.3038   -6.7559   -3.9711    2.1422    6.0648    3.7624

 
 
 
 
 
 
 
 
 

Next, we get the Bernoulli wavelet coefficients,   

                         
 0.8284   -0.0845    0.0119   -0.0034    0.0002   -0.0005Y   

and substituting these coefficients in Eq. (3.3), we get the approximate solution of Eq. (4.1) with exact solution 

as shown in table 1 and the error analysis is shown in table 2.  

Table 1: Numerical result of the example 4.1.

 t Exact 
Bernoulli Wavelet  

(k = 1, M = 6) 

Absolute Error 

0.0833 0.9608 0.9608 2.43e-06 

0.2500 0.8944 0.8944 3.77e-07 

0.4167 0.8402 0.8402 5.68e-07 

0.5833 0.7947 0.7947 2.71e-07 

0.7500 0.7559 0.7559 4.44e-07 

0.9167 0.7223 0.7223 2.55e-07 

 

Table 2: Maximum error analysis of the example 4.1 
12kN M  Bernoulli Wavelet 

k = 1, M = 3 3.15e-04 

k = 1, M = 5 1.17e-05 

k = 1, M = 6 2.43e-06 

Example 2. Next, consider [16],  

0

( )
( ) 2 , 0 1.

t
y s

y t t ds t
t s

   


             (4.2) 
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which has the exact solution  ( ) 1 exp( )y t t erfc t   . We solved the Eq. (4.2) by approaching the 

present method for k = 1 and M = 6 is given as, 

 

[0.5774    1.0000    1.2910    1.5275    1.7321    1.9149]

    1.5774    2.0000    2.2910    2.5275    2.7321    2.9149

   -2.3323   -2.0207   -1.2825   -0.2993    0.8660    2.1804

    2.1006    0.16

f

K




77   -1.3456   -1.8598   -1.0541    1.3064

    1.2988    2.5317    1.8244   -0.0131   -1.7171   -1.7300

  -10.0798   -2.4415    7.3354   10.4833    4.1125   -7.2516

   -1.0474   -2.5316   -1.9511    0.1222    1.8405    1.5060

 
 
 
 
 
 
 
 
 

Next, we get the Bernoulli wavelet coefficients,  

 

                                  
 0.5931    0.1433   -0.0721    0.0858   -0.0064    0.0464Y   

 with the help of Bernoulli wavelet coefficients, we get the approximate solution as shown in table 3 and the 

error analysis is shown in table 4.  

Table 3: Numerical result of the example 4.2.

 T Exact 
Bernoulli Wavelet (k 

= 1, M = 6) 

Absolute Error 

0.0833 0.3902 0.3828 7.45e-03 

0.2500 0.5392 0.5378 1.42e-03 

0.4167 0.6088 0.6077 1.12e-03 

0.5833 0.6527 0.6521 6.21e-04 

0.7500 0.6840 0.6834 6.20e-04 

0.9167 0.7079 0.7079 5.49e-05 

 

Table 4: Maximum error analysis of the example 4.2 
12kN M  Bernoulli Wavelet  

k = 1, M = 3 1.6e-02 

k = 1, M = 5 9.2e-03 

k = 1, M = 6 7.5e-03 

Example 3. Let us consider the Abel’s integral equation of first kind [16],  

2 3

0

2 ( )
(105 56 48 ) .

105

t
y s

t t t ds
t s

  


     (4.3) 

Firstly, consider    ( ) ( )Ty t Y t 
                          

(4.4) 

substituting ( )y t  in Eq. (4.3), we get  

2 3

0

2 ( )
(105 56 48 ) .

105

t TY s
t t t ds

t s


  


    (4.5) 

Next, we collocate the point it and substitute in Eq. (4.5).  

2 3

0

2 ( )
(105 56 48 ) .

105

it T

i i i

i

Y s
t t t ds

t s


  




             (4.6)
 

Now, we get the system of algebraic equations with unknown coefficients for k = 1 and M = 5 as given, 

                                  
 0.6294    1.0564    1.3065    1.4984    1.7100f   
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  0.6325    1.0954    1.4142    1.6733    1.8974

-0.9494   -1.1384   -0.8165   -0.1932    0.6573

 0.8938    0.2156   -0.6325   -0.8681   -0.0339

 0.4727    1.2808    0.9759   -0.0905   -0.8107

-4.0997  

K 

 -1.6545    3.5277    4.4946   -0.5290

 
 
 
 
 
 
  

 

 By solving this system of equations, we get the Bernoulli wavelet coefficients 

                                               
 0.9167     0     0.0373     0.0345    0 Y 

 
and then substituting these coefficients in Eq. (4.4), we get the accurate solution of Eq. (4.3) with exact solution 

3 2( ) 1y t t t    is shown in table 5 and the
 
maximum error is 1.33e-15. Error analysis is shown in figure 

1.  

Table 5: Numerical results of the example 3.

 t Exact solution 
Bernoulli wavelet 

(k = 1, M = 3) (k = 1, M = 5) 

0.1 0.991000000000000 0.990793650793651 0.990999999999999 

0.2 0.968000000000000 0.955555555555555 0.968000000000000 

0.3 0.937000000000000 0.926031746031746 0.937000000000000 

0.4 0.904000000000000 0.902222222222222 0.904000000000001 

0.5 0.875000000000000 0.884126984126984 0.875000000000001 

0.6 0.856000000000000 0.871746031746032 0.856000000000001 

0.7 0.853000000000000 0.865079365079365 0.853000000000000 

0.8 0.872000000000000 0.864126984126985 0.872000000000000 

0.9 0.919000000000000 0.868888888888889 0.918999999999999 

 

 
Fig. 1: Error analysis of the example 3. 

Example 4. Next, consider [16],  

0

( )
.

t
y s

t ds
t s




                   (4.7) 

Applying the proposed method, we obtain the approximate solution ( )y t  of Eq. (4.7) with the help of 

Bernoulli wavelet coefficients. Numerical solution is compared with exact solution 
2

( )y t t



 
and existing 

methods is shown in table 6 and figure 2. Error analysis is shown in table 7 and figure 3 is compared with the 

existing method. 

 

Table 6: Numerical results of the example 4. 

t Exact solution Bernoulli wavelet (k = 1, M = 6) Method [16] 

0.1 0.201317 0.197156 0.200128 

0.2 0.284705 0.284589 0.286092 

0.3 0.348691 0.349102 0.347394 

0.4 0.402634 0.402358 0.404161 

0.5 0.450158 0.449889 0.449568 

0.6 0.493124 0.493340 0.492704 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.02

0.04

0.06

t

E
rr

o
r 

a
n

a
ly

si
s

 

 

k =1, M = 3

k =1, M = 5
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0.7 0.532634 0.532707 0.532315 

0.8 0.569410 0.568574 0.569156 

0.9 0.603951 0.604356 0.603742 

 

Table 7: Error analysis of the example 4. 

t 
Bernoulli wavelet 

k = 1, M = 6 
Method [16] 

0.1 4.16e-03 1.20e-03 

0.2 1.15e-04 1.40e-03 

0.3 4.11e-04 1.30e-03 

0.4 2.75e-04 1.50e-03 

0.5 2.68e-04 5.90e-04 

0.6 2.17e-04 4.20e-04 

0.7 7.30e-05 3.19e-04 

0.8 8.35e-04 2.54e-04 

0.9 4.05e-04 2.09e-04 

 

 
Fig. 2: Comparison of numerical results of the example 4.  

 
Fig. 3: Comparison of error analysis of the example 4. 
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5. Conclusion 

 

In this paper, we introduced the Bernoulli wavelet method for the numerical solution of Abel’s integral 

equations. Using Bernoulli wavelet reduces an integral equation into a system of algebraic equations. 

Numerical results are highly accuracy with exact ones and existing method [16]. Error analysis shows the 

accuracy gives better, with increasing the level of resolution N, for better accuracy, and then the larger N is 

recommended. Hence the present scheme is very easy, accurate and effective. 
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